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On the Utilization of Periodic Wavelet
Expansions in the Moment Methods

Gaofeng Wang

Abstract-In this short paper, a new wavelet approach that makes use
of periodic wavelet expansions in the moment methods is presented. The
unknown field or response is expanded in terms of the periodic wavelet
fnnctions. As a wavelet expansion method, the moment-method matrix
is rendered sparsely populated after applying a threshold procedure.
Moreover, ttds approach circumvents the difficulties in the application
of the conventional wavelet expansions on the real line to finite iuterval
problems. Numerical study shows that ttds approach gives better accuracy
than the use of tJteconventional wavelet expansions on the whole real line.

1, INTRODUCTION

Recently, the wavelet expansion methods have been introduced
to the applications of numerical analysis in electromagnetic (e.g.,
see [1]–[3]). Although the theory of wavelets is a relatively new
area in mathematics, it has found many applications in engineering
areas due to the special properties of wavelets. As a basis, the
wavelet can be employed to express the tmknown function in a
series of wavelet functions. The wavelet expansion can adaptively
fit itself to the various length scales associated with the physical
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Fig. 1. The periodic wavelet constructed from the Daubechies orthogo-
nal wavelet on the rest line with N = 7. (a) gs (<) [~~~~ (<)] and (b)

923(() [~i:; (ol.

configuration under study by distributing the localized basis functions
near the discontinuities and the more spatially diffused ones over the
smooth regions. Moreover, the cancellation property of the wavelets
can eliminate, to a great extent, the coupling between the distant
parts of the physical configuration under consideration. Attributed to
these properties, the moment-method matrix obtained by a wavelet
expansion is rendered sparsely populated as shown in [1]–[3].

However, difficulties exist when the unknowu function is defined
in finite intervals, while mo St of the wavelets are developed on
the whole real line. In [1], Steinberg and Leviatan applied the
Battle–Lemarie wavelet expansion on the real line to the moment
method for solving an electromagnetic coupling problem [1]. Due
to the infinite support of tlhe Battle–Lemarie wavelet, the wavelet
functions must be troncated to fit in the finite definition interval of the
unknown function. The truncated wavelet basis lacks completeness
over the finite iuterval under consideration. As a consequence,
artificial oscillations appear in the results (e.g., see the magnitude
of the equivalent magnetic current obtained from the truncated
Battle-Lemarie wavelet in Fig. 4 of [1]).

A full wave analysis of microstrip floating line strtrctwres by

wavelet expansion methodl was presented in [2], [3], where a

Sommerfeld-type integral with an intractable kernel (the dyadic

Green’s functions for the grcmnded dielectric slab) was treated by

using Daubechies wavelet. Since the Daubechies wavelet has compact

support, one can easily delete the wavelet or scaling functions that

are beyond the regions of interest, and thus the truncation of the
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Fig. 3. The sparseness structures of the moment-method matrix obtained by
using the periodic wavelet expansion, (a) threshold 5 x 10’4, R ss 7.74(%
and (b) threshold 5 x 10–3. R % 2.08’ZO.

wavelet at the boundary points is avoided. However, as mentioned in
[2], [3], an edge basis is required at each end of the finite intervals
to ensure the completeness of the basis.

Here, the periodic wavelets in Lz ( [0, 1]) are used in the moment
methods instead of the wavelets on the whole real line. The utdization

of periodic wavelets makes it possible to easily construct a complete

basis over the finite interval. Numerical study shows that the artificial

oscillations no longer occur.

II. THEORY

A. Periodic, Orthogonal Wavelet

Given an orthogonal wavelet on the real line with scaling func-
tion (father wavelet) 4(<) and mother wavelet @(<), a periodic,
orthogonal wavelet can be constructed as [4]

(1)

LEZ

where rj~, .(<) = 2mt2r)(2w< -n) andti~,n(<) = 2m12$(2m~–
n ) are, respectively, the dilating and translating versions of the scaling

function and mother wavelet, and Z is the set of integers. It can be

shown that the following wavelet functions

go(c) =@::;(() = 1 (3)

92m+n(0 = ?%”?2(0

=g2m(< – n2–n’)

05rL<2m– 1 rn=o. 1,2,... (4)

constitute a periodic, orthonormal basis in L2 ( [0, 1]). For any pe-
riodic function h(<)in the interval [0, 1], an approximation of this

function can be defined as the projection at resolution 2~

h(() =Pmh(()

= ‘y’ hngn(() (5)
.=0

where k~ is the inner product of h ((J and gn (< ). The projection at
resolution 2’” converges to the exact function as m - +eo.

From (1) and (2), the periodic wavelets can be constructed from
their counterparts on the real line. The periodic, orthogonal wavelet
constructed from the Daubechies compactly supported wavelet with
II’ = 7 (see [4]) is plotted in Fig. 1.

B. Periodic Wavelet Expansion in Moment Metltod

Consider the following linear integral equation

f
G(x, X’)f(X!’)dZ’ =P(z), .c ~ ~ (6)

L

where G( x, x’) is the known kernel of the integral equation (usually
the Green’s function of the problem under consideration), f( x’) is the
unknown function to be determined and p (,.c) is the known excitation.
Many electromagnetic scattering problems can be formulated in the
above generic form. Usually, (6) is vectorial and two- or three-
dimensional, but for the purpose here, it takes a scalar and one-
dimension form. Generally, the integration domain L consists of
several line segments, namely, L = U~~~ Lk, where h- is the

number of line segments, L~ = [z$), Jy)] and L, f_LJ = @if i # ~.
If, further, it is assumed that f( z’ ) has the same behavior at the

boundary points .r$) and XY), i.e., ~[.r$) ] = ~[.r~) ], the periodic



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO, 10, OCTOBER 1995 2497

30

25

20

15

10

5

0

Exact Solutlon (R= 100%)

00 0 05% threshold (R=’? 74%)

. . . . . . . . 0 5% threshold (R=2 08%)

o 02 0.4 06 0.8 1 1.2

x

Fig. 4. Equivalent magnetic current magnitude obtained using the sparse matrices shown in Fig. 3.

wavelets can be adopted to express the unknown function over the line

segment L~ as long as one establishes a map between the line segment
L k and the interval [0, 1]. Many practical electromagnetic problems
are subjected to this constraint. In case this constraint is not satisfied,
one can write the unknown function over segment Lk in two terms:
f(x) = f(new) (x) + Cc(x), where e(x) is a known function which
is defined over L~ and satisfies the boundary conditions e[z$) ] = O

and e[z~)] = 1, and G7 = ~[x~)] – ~[z$)]. In fact, e(z) can be

selected in the same way as the basis functions in the conventional

moment methods. For instance, e(z) can be simply chosen as a

‘~) If f[z$)] and ~[.r~)]pulse function near the boundary point .rI .

are pre-defined, C is a known constant. If ~[.r$) ] and .f[.r~) ] are

unknown, c can be considered as the expansion coefficient of the
basis function e(x). It is then determined in the same way as the other

coefficients in the expansion of ~(”’W) ( ~) by solving the moment-

method matrix equation. By such a change of unknown function,
it can easily be verified that the new unknown function ~(n’w) (x)

satisfies f( “W) [X$)] = f (new)[z~)]. Therefore, without loss of

generality, herein f [.z$; ] = f[.z~) ] is assumed for each segment
LL(k = 1,2,

Rewrite (6)

. . .. A’).

as follows

k=I JL~

kZIY

xEL=u Lk. (7)
k=l

A general procedure for solving the integral equation (7) is the
moment method [5]. There are two sets of functions which completely
specify a moment-method procedure. One is so-called basis functions
and the other testing functions. Here, the periodic wavelet will be
employed as both basis functions and testing functions. By using
change of variables over segment Lk

(k) + [r$ k)
x’ = To – d?] “e

=Tk(~’) (8)

(7) becomes

k=I<

xEL=u Lk (9)
k=l

where h(k) (~) = f[~k(~)]. Note that h(~)(<) is defined on [0, 1]
with h(~) (O) = It(’)(1), thus it can be periodized to give a periodic
function in L’( [0, l]).

Using the periodic wavelet expansion (5) to h(k)(<) (k =
1,2, ..., If) and Galerkin’s method for the testing procedure, a

set of linear algebraic equations in matrix form can be obtained from
integral (9) as follows

[AJ,v] [Hjvl = [B,] (lo)

with
1

1 [/
1

AJN = G[T~(~), Tk/ (<’)] gn(<’)lr~’)
‘k’)’ ‘(’1

— Z.
o 0

“9,(0 Ixy) – Z$) Id<

J
1

BJ = ~[~k(<)]gj (~) lx!) – x$) IW
o

HN = h~k’)

where ~’,n = 0,1, 2,..., 2“Z–l, J=(k–1).2~+j+l, and
N = (k’ – 1). 2m + n + 1. The above integrations can be performed

either using the conventional Gaussian quadrature or using the fast

wavelet transfom algorithm.

III. NUMERICAL RESULTS

The problem of electroma,qnetic coupling through a double-slot

apefiure in a planar conducting screen separating two identical half.
space regions is investigated in this section by using the periodic
wavelet expansion. This problem was presented in [1] for the demon-
stration of the use of wavelet expansion on the real line in the moment
method. To compare the two approaches, the same example with the
same parameters is studied. Namely, .f(.r) = J14v(z), G( Z, a’) =
H(2)(27r\ z-x’ I ), p(z) = --[qO/T]H~c(a), L = [–1.1, –0.1] Uo
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[0.1, 1.1], where.c isthephysical coordinate normalized to wave-

length, AKy is the y-component of the equivalent magnetic current,

11(2) is the zero-order, second-kind Hankel function, qO is the
in&sic impedance in free space, and H~c is the magnetic field
intensity of the TE incident plane wave. Fig. 2 depicts the results
of the magnitude of the equivalent magnetic current obtained using

the periodic wavelet with 2m = 128 in comparison with the pulse

function as the basis in moment method. The total number of periodic

wavelet functions associated with the expansion with 2m = 128 is
256, as is also the total number of pulse functions used in the above
computation. Good agreement can be observed between the two sets
of results.

Unlike the case of the use of truncated wavelets on the real line
in the moment method, where strong artificial oscillations almost

definitely appear in the equivalent magnetic current magnitude near
the boundary points no matter how high the resolution is selected
in the wavelet expansion, the utilization of the periodic wavelets
can suppress occurrences of oscillations near the boundary points as
shown by Fig. 2. Due to the finite precision or resolution of computers
and physical systems, solutions of problems under consideration are,
in practice, represented in a finite resolution subspace. One major
advantage of periodic wavelets is that, given a finite resolution 2m,
there always exists a set of periodic wavelet functions that forms a
complete basis in the corresponding subspace V%” C Lz ( [0, 1]).
By setting a map between the finite interval under study and [0, 1],
one can obtain a complete basis defined on the desired computation
domain from the periodic wavelets. Quite the contrary, it is very

difficult for a set of truncated wavelet functions on the whole real
line to form a complete basis in a finite interval. The occurrence

of oscillations in the equivalent magnetic current magnitude is a

consequence for the lack of completeness in the basis near the
boundaries.

As was expected for a wavelet expansion method, the use of peri-
odic wavelets renders a sparse moment-method matrix. To examine
the sparsity, a threshold procedure is imposed on the moment-method
matrix. That is, in the moment-method matrix, the element is kept
only if its magnitude relative to that of the largest one is above
a selected threshold and set to zero otherwise. Fig. 3 illustrates the
sparseness structures of the moment-method matrix obtained by using
this technique with thresholds of 5 x 10–4 and 5 x 10–3, where the
black ink indicates the remaining nonzero elements. The ratio R of
the number of the remaining nonzero elements to the total number
of elements can be obtained as R z 7.74% and R z 2. 08°/0 for the
respective thresholds selected above. Fig. 4 shows the magnitude of
the equivalent magnetic current obtained by using the sparse matrices
in Fig. 3. Note that with the threshold 5 x 10’4, the number of
the matrix elements drastically reduces to R x 7.74% after the
threshold processing. Although only such a small ratio of matrix
elements is employed, the resultant equivalent magnetic current is
still quite accurate as shown by Fig. 4. When the threshold 5 x 10–3
is applied and the number of the used matrix elements further reduces
toR= 2.08%, some modest losses of accuracy appear near the
boundaries in the resultant equivalent magnetic current as shown in
Fig. 4. Considering that only a very small ratio (2.08%) of the matrix
elements is used in this computation, the result is reasonably accurate.

IV. CONCLUSION

The utilization of periodic wavelet expansions in the moment
methods has been proposed here. Comparing with their counterparts

on the real line, the periodic wavelets are more suitable to handle the
finite intervaf problems since they bypass the difficulties arising in
the use of wavelets on the whole real line to expand the unknown
functions defined over finite intervals. The periodic wavelet expansion
preserves the capability of generating sparse moment-method matrix
and adaptively fits itself to the various length scales. Numerical

example shows that the periodic wavelet expansion gives better
accuracy than the conventional wavelet expansion for finite interval
problems.
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Analytical Expressions for Simplifying the Design of
Broadband Low Noise Microwave Transistor Amplifiers

Garry N. Link and V. S. Rao Gudimetla

Abstract-An analytical expression for the minimum achievable noise
figure for a specified gain at a given frequency is derived for a microwave
ampfifier. The minimnm noise figure is given in terms of the specified gain,
the amplifier noise parameters, and the S parameters. Similarly, another
expression for the maximum gain at a specified noise figure is derived
in terms of the noise figure, the noise parameters, and the S parameters,
It is shown that these expressions simplify the tradeoff considerations
for broadband low noise ampfifier design by avoiding the need to draw
several constant noise and gain circles at each freqnency of interest.

I. INTRODUCTION

A broadband low noise amplifier is designed to meet a specified
gain versus frequency profile, usually either flat gain or 6 dB/octave
gain increase. The maximum acceptable noise figure over the entire
bandwidth is also specified. To determine the minimum noise figure
for the specified gain at a given frequency, the required gain circle
is drawn on the Smith chart along with several noise figure circles
[1], [2]. The minimum noise figure corresponds to the noise circle
that is tangential to the gain circle. This process is repeated at each
frequency of interest to ensure that the specified gain can be provided
at or below the desired noise figure over the desired bandwidth. If
not, a different device must be chosen or an additional tradeoff must
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